Thomas Kramer

IT-COW | Algorithmen

Schnelleres Präprozessing bei meinem RMQ-Algorithmus erreicht

By Administrator at August 14, 2012 21:53
Filed Under: Algorithmen, Java, Projekte

Ich habe nun ein wesentlich schnelleres Präprozessing (Vorverarbeitungszeit) bei meinem RMQ-Algorithmus zur Ermittlung des Lowest Common Ancestors in einem Baum erreicht. Zum Vergleich steht meine alte Version des Algorithmus.

 

Das Präprozessing besteht, wie schon im alten Artikel beschrieben, aus dem Füllen der RMQ_R, RMQ_E und RMQ_L-Arrays. In meinen Tests hat sich herausgestellt dass das Füllen des RMQ_R-Arrays verantwortlich für die langsame Vorverarbeitungszeit war.

 

Entsprechend besteht der Unterschied der neuen (siehe Quellcode unten) zur alten Version in den Funktionen fillRMQ_R_Array und Euler_Tour. Der Fehler war linear im RMQ_E-Array das erste Vorkommen jedes einzelnen Knotens zu suchen, wo es doch in Java schnelle Datenstrukturen gibt die einen lesenden Zugriff in O(1) erlauben.

 

Ich hatte zuerst überlegt mit zweidimensionalen Arrays zu experimentieren und dann zu sortieren, aber das war ebenfalls unnötig da wegen der Tags die vorkommenden Index-Werte alle bekannt sind. Hashtabellen erlauben einen Zugriff in O(1), damit brauche ich nur auszulesen und in das RMQ_R-Array zu übernehmen.

 

Die alte Laufzeit war, siehe auch den alten Artikel, auf meinem Turion 64x2 1,6 GHZ-Notebook:

 

bei 100.000 Knoten eine Vorverarbeitungszeit von ca. 235 Sekunden und eine Abfragezeit (bei 100.000 Abfragen) von ca. 38 Sekunden.

 

Die neue Laufzeit ist auf meinem Pentium DualCore T4200 2 GHZ-Notebook:

 

bei 100.000 Knoten eine Vorverarbeitungszeit von ca. 200 Millisekunden und eine Abfragezeit (bei 100.000 Abfragen) von ca. 25 Sekunden.

 

Das Präprozessing ist damit mehr als hundert Mal so schnell wie vorher. Bei der Abfragezeit wundert mich eher dass der Unterschied nicht größer ist, denn das eine Notebook ist doch 5 Jahre und das andere 2 Jahre alt. Die Geschwindigkeit ist damit bereits so hoch, dass sich eine weitere Optimierung eigentlich kaum noch lohnt. Eventuell werde ich diese aber doch irgendwann noch in Angriff nehmen.

 

Zuerst wollte ich übrigens den Quellcode zum Reingold-Tilford-Algorithmus herauskürzen, habe ihn aber dringelassen weil damit das Überprüfen des RMQ-Algorithmus auf Richtigkeit einfacher ist.

 

Nachfolgend noch ein neuer Link zu den RMQ-Algorithmen, von der Universität Ulm: Link. Interessant fand ich dass diese Arbeit auf die Bachelor-Arbeit von Antonia Kresse verweist (auf Umingo.de), denn es gibt offenbar auch nicht viele Arbeiten zu dem Thema.

 

Außerdem möchte ich noch topcoder.com verlinken, weil die als eine der wenigen Seiten auch konkreten Quellcode zum Thema auflisten. Als Referenz muss aber wohl das Script Algorithmen auf Sequenzen der Ludwig-Maximilians-Universität München gelten, welches aber auch nicht einfach zu lesen ist.

 

Fortsetzung: Link.

 

/************************************************************************************
             Visualisierung eines binären Suchbaumes in Processing
                 mithilfe des Reingold-Tilford-Algorithmus
                 und Suche des LCA über den RMQ-Algorithmus
                             von Thomas Kramer
                          Version 1.40 - 14.08.2012
************************************************************************************/

/* Konfiguration */
   int Baumelemente = 10;
   /* wenn Zentrierung aktiviert wird, werden die Mausabfragen deaktiviert */
   boolean Zentrierung = true;
  
   /* RMQ-Abfragen einschalten? */
   boolean RMQ_Praeprocessing = true;
   boolean RMQ_Abfragen = true;
   /* debugging-Ausgabe */
   boolean debug = false;
   /* für Laufzeittests kann es sinnvoll sein das Zeichnen generell zu unterdrücken */
   boolean zeichnen = true;
  
   /* Zufallszahlen-Unter-/Oberwert festlegen */
   int unten = 1;                       
   int oben = 100;
     
   int AbstandOben = 50;
   int AbstandLinks = 10;
   int ZwischenAbstandOben = 25;
   int ZwischenAbstandLinks = 5;
   int Breite = 160;
   int Hoehe = 50;

   /* Farben festlegen (Schwarz, Weiss, Hintergrund-Farbe) */
   color c1 = color(0, 0, 0);
   color c2 = color(255, 255, 255);
   color c3 = color(193, 185, 185);
   color c4 = color(245, 7, 7);  
/* Konfiguration-Ende */

public class tBaum
{
  /* in Inhalt wird der Zufallszahlen-Wert gespeichert */
  int Inhalt = 0;
  /* gibt die Ebene für jeden Knoten an */
  int Ebene = 0;
  /* Art gibt die Position des Knotens im Verhältnis zur Wurzel an
     -1 = linker Teilbaum, +1 = rechter Teilbaum */
 
  int Art = 0;
  int Versatz = 0;
 
  /* fürs Einreihen der Knoten brauche ich Zufallszahlen für zufällige
     Bäume, aber für den RMQ-Algorithmus ist das unpraktisch weil für das
     R-Array Knoteninhalt und Index vertauscht werden, daher Tagging-Variable */

  int tag = 0;
 
  /* Pointer für das Traversieren */
  tBaum Vater = null;
  tBaum links = null;
  tBaum rechts = null;
 
  /* speichert die jeweilige Tiefe des linken und des rechten Unterbaumes */ 
  Integer linksEbenen = 0;
  Integer rechtsEbenen = 0; 

  public int getTag()
  {
    return this.tag;
  }
};

/* weitere globale Variablen */
int Ebene = 0;
int EbenenInsgesamt = 0;
tBaum Wurzel = null;
tBaum kleinster_Versatz = null;
tBaum groesster_Versatz = null;
tBaum letzter_Knoten = null;
tBaum[] RMQ_E       = new tBaum[(2*Baumelemente)-1];
int[]   RMQ_L       = new int  [(2*Baumelemente)-1];
int[]   RMQ_R       = new int  [Baumelemente];
Hashtable<Integer, Integer> elementsProcessed = new Hashtable<Integer, Integer>();
HashSet<Integer> Zufallszahlen = new HashSet<Integer>();
ArrayList<tBaum> ZList = new ArrayList<tBaum>();
long completeTimeBefore = 0;
long completeTimeAfter  = 0;
long completeTimeDiff = 0;

/* Variablen für das Zeichnen */
int MaxElemente = 0;
int MaxElementePlatz = 0;
int Breite_2 = Breite / 2;
int Hoehe_2 = Hoehe / 2;
int GesamtVersatz = 0;
boolean ausgegeben = false;

import java.util.HashMap;
import java.util.concurrent.TimeUnit;

void setup() {
  if (Baumelemente > abs(oben - unten))
    throw new IllegalArgumentException("Fehler! Es werden einmalige Zufallszahlen benötigt und die Anzahl Knoten ist größer als das Zufallszahlen-Intervall!");
   
  if ((Baumelemente * 1.2) > abs(oben - unten))
    println("Achtung, die Anzahl Baumknoten ist nicht mindestens 20% größer als das Zufallszahlen-Intervall, das kann die Geschwindigkeit deutlich herabsetzen!"); 

  /* Größe des Screens setzen */
  size(screen.width, screen.height);
 
  /* Bildschirm löschen */
  background(c3);
 
  /*-----------------------------------------------------------------------------
   *  einmalige Zufallszahlen erzeugen
   *-----------------------------------------------------------------------------*/
                   
  Zufallszahlen = new HashSet<Integer>();
  while (Zufallszahlen.size() < Baumelemente)
    Zufallszahlen.add((int) random(unten, oben));        
   
  /*-----------------------------------------------------------------------------
   *  Startzeit messen für RT-Algorithmus
   *-----------------------------------------------------------------------------*/
   
  completeTimeBefore = System.currentTimeMillis();                     
 
  /*-----------------------------------------------------------------------------
   *  Knoten erzeugen
   *-----------------------------------------------------------------------------*/
  
  int i = 0;
  Iterator<Integer> it = Zufallszahlen.iterator();
  ZList = new ArrayList<tBaum>();    
 
  while (it.hasNext())
  {   
    if (i == 0)
    {
      Wurzel = Einfuegen(null, null, it.next(), 0, i);     
      /* Initialisierungswerte setzen */
      kleinster_Versatz=Wurzel;
      groesster_Versatz=Wurzel;                     
    }
    else {
      Einfuegen(Wurzel, null, it.next(), 0, i);
      ZList.add(letzter_Knoten);
    }                       
   
    i++;
  }  
     
  /*-----------------------------------------------------------------------------
   *  Versatz berechnen
   *-----------------------------------------------------------------------------*/

  berechne_Versatz(Wurzel);
 
  /* kleinsten Versatz im Baum allen Knoten aufaddieren, danach hat man
     die konkrete Spaltenzahl (x-Koordinate) für jeden Knoten - beginnend mit 1 */

  GesamtVersatz=abs((kleinster_Versatz).Versatz)+1;   
 
  /* das Aufaddieren geschieht jetzt direkt in der Zeichnen-Routine,
     dadurch wird aber ein Teil des RT-Algorithmus nicht mehr mitgemessen! */

  // setze_Wert(Wurzel, GesamtVersatz);   
 
  /*-----------------------------------------------------------------------------
   *  Endzeit messen für RT-Algorithmus
   *-----------------------------------------------------------------------------*/  
  nimmZeit("RT-Algorithmus");
 
  /*-----------------------------------------------------------------------------
   *  Variablen für das Zeichnen einmalig setzen
   *-----------------------------------------------------------------------------*/       
  MaxElemente = (groesster_Versatz).Versatz + GesamtVersatz;
  MaxElementePlatz = (MaxElemente * Breite)+((MaxElemente - 1) * ZwischenAbstandLinks);       
 
  /*-----------------------------------------------------------------------------
   *  Euler-Tour-Arrays erstellen
   *-----------------------------------------------------------------------------*/   
  if (RMQ_Praeprocessing)
  {
    /* Startzeit nehmen */
    completeTimeBefore = System.currentTimeMillis();                          
  
    elementsProcessed.clear();
    Euler_Tour(Wurzel, -1);
    fillRMQ_R_Array();
 
    /* Endzeit nehmen und Ausgabe */
    nimmZeit("Erstellung der RMQ-Arrays"); 
 
    /*-----------------------------------------------------------------------------
     *  Debug-Ausgabe der RMQ-Arrays
     *-----------------------------------------------------------------------------*/           
     if (debug)
     {    
       String DebugString1;
       String DebugString2;
       String DebugString3;  
       String DebugString4;     
       DebugString1="Index  ";  
       DebugString2="RMQ_E: ";
       DebugString3="RMQ_L: ";  
       DebugString4="RMQ_R: ";     
       for (int r=0; r<(Baumelemente*2-1); r+=1)
       {
         DebugString1+=r + ", ";
         DebugString2+=RMQ_E[r].tag + ", ";
         DebugString3+=RMQ_L[r] + ", ";    
       }
       for (int r=0; r<Baumelemente; r+=1)
         DebugString4+=RMQ_R[r] + ", ";

       println(DebugString1);  
       println(DebugString2);
       println(DebugString3);  
       println(DebugString4);       
     }   
    
    /*-----------------------------------------------------------------------------
     *  RMQ-Abfragen beantworten
     *-----------------------------------------------------------------------------*/

    if (RMQ_Abfragen)
    {
      /* Zuerst Liste mit Knoten shufflen */
      Collections.shuffle(ZList);
 
      /* Startzeit nehmen  */
      completeTimeBefore = System.currentTimeMillis();       
 
      int tag1 = 0;
      int tag2 = 0;
      int result = 0;
      i = 0;
      /* Wurzelknoten wurde ja nicht einbezogen, also Obergrenze = Anzahl -2 */
      int x = Baumelemente -2;
      /* soviele Abfragen beantworten wie Knoten-1 da sind */
      while (x >= 0)
      {
        tag1 = ZList.get(i).tag;
        tag2 = ZList.get(x).tag;
     
        /* bei Performance-Tests wollen wir die Zeit für die Bildschirmausgabe nicht mittesten */     
        /* println("LCA von " + tag1 + " und " + tag2 + " = " + LCA(tag1, tag2).tag); */     
         result = LCA(tag1, tag2).tag; 
     
        i++;
        x--;      
      } 
      
      /* Endzeit nehmen und Ausgabe */
      nimmZeit("RMQ-Abfragen");
    }
  }
 
  /*-----------------------------------------------------------------------------
   *  Maus auf Mittelposition setzen (innerhalb des Fensters)
   *-----------------------------------------------------------------------------*/

  mouseX=(screen.width/2);
  mouseY=(screen.height/2);
   
  /*-----------------------------------------------------------------------------
   *  erneute Aufrufe des Events draw() verhindern
   *-----------------------------------------------------------------------------*/

  if (Zentrierung)
    noLoop();    
}

void draw()
{
  /*-----------------------------------------------------------------------------
   *  Hintergrundfarbe setzen, dabei wird auch der gesamte Bildschirm gelöscht
   *-----------------------------------------------------------------------------*/

  background(c3); 

  /*-----------------------------------------------------------------------------
   *  Überschriften setzen
   *-----------------------------------------------------------------------------*/

  fill(c2);
  textSize(20);
  text("Visualisierung eines binären Suchbaumes (Reingold-Tilford-Algorithmus) in Processing", ((screen.width)/2)-400, 50);
  textSize(15);
  text("von Thomas Kramer", ((screen.width)/2)-70, 80);
  text("(ESC zum Abbrechen)", ((screen.width)/2)-75, 110);
  textSize(13);
 
  /*-----------------------------------------------------------------------------
   *  Baum grafisch ausgeben
   *-----------------------------------------------------------------------------*/

  if (zeichnen)
  {
    /* Startzeit nehmen */   
    completeTimeBefore = System.currentTimeMillis();         
   
    ZeigeBaum(Wurzel, 0, 0);
    ausgegeben = true;
   
    /* Endzeit nehmen und Ausgabe */
    nimmZeit("Baumzeichnen");
  }
    
  /*-----------------------------------------------------------------------------
   *  RMQ-Abfragen beantworten und einzeichnen
   *-----------------------------------------------------------------------------*/
         
  if (RMQ_Abfragen)
  {
    text("Ermittlung des Lowest Common Ancestors anhand der Tags und des RMQ-Algorithmus", ((screen.width)/2)-240, (screen.height)-170);     
    text("LCA(7,8) = " + LCA(7,8).tag, ((screen.width)/2)-20, (screen.height)-150);  
    text("LCA(4,6) = " + LCA(4,6).tag, ((screen.width)/2)-20, (screen.height)-130);  
    text("LCA(3,4) = " + LCA(3,4).tag, ((screen.width)/2)-20, (screen.height)-110);  
    text("LCA(5,8) = " + LCA(5,8).tag, ((screen.width)/2)-20, (screen.height)-90);  
    text("LCA(7,9) = " + LCA(7,9).tag, ((screen.width)/2)-20, (screen.height)-70);      
  }

  /*-----------------------------------------------------------------------------
   *  aktuelle Mauskoordinaten ausgeben
   *-----------------------------------------------------------------------------*/

  if (!Zentrierung)
  {
    fill(c3);
    rect(1, 0, 80, 60);
    fill(c2);
    text("x: " + mouseX, 20, 20);
    text("y: " + mouseY, 20, 40);
  }
}

void berechne_Versatz(tBaum Knoten)
{
  /* PostOrder-Druchlauf -> linker Teilbaum, rechter Teilbaum, Wurzel */
  if (Knoten!=null)
  {
    berechne_Versatz(Knoten.links);                 
    berechne_Versatz(Knoten.rechts);     
    berechne_Konturen(Knoten);   
  }
}

void berechne_Konturen(tBaum Knoten)
{
   /* berechne Konturen, nur notwendig wenn aktueller Knoten zwei Söhne hat */
  if (Knoten.links!=null && Knoten.rechts!=null)
  {
    int linke_Kontur=0;
    int rechte_Kontur=0;
  
    /* finde die maximalen Ebenen für die Unterbäume links und rechts, separat */
    /* übernimm davon den niedrigeren Wert */
    int minLevelinsgesamt=min(Knoten.linksEbenen, Knoten.rechtsEbenen);     
   
    /* bestimme den maximalen und minimalen Versatz jeder Kontur bis zu der bestimmten Ebene (einschließlich) */
    linke_Kontur  = finde_Versatz(Knoten.links, +1, minLevelinsgesamt, (Knoten.links).Versatz);   
    rechte_Kontur = finde_Versatz(Knoten.rechts, -1, minLevelinsgesamt, (Knoten.rechts).Versatz);  
  
    /* Korrigierungs-Versatz berechnen */
    int Versatz=((linke_Kontur-rechte_Kontur))+2;  
    /* Ergebnis ist ungerade? */
    if ((Versatz & 1)!=0)
      Versatz+=1;
    /* Integer-Division */
    Versatz=(Versatz>>1);
   
    /* Test-Ausgabe */
    if (Versatz <0)
      println("abs()-Funktion sollte doch verwendet werden!");
  
    /* diesen Versatz dem linken Teilbaum als negativen Wert aufaddieren, dem rechten Teilbaum
       als positiven Wert */

    setze_Wert(Knoten.links,-Versatz);
    setze_Wert(Knoten.rechts,Versatz);
  }
}

/* berechne die Tiefe der jeweiligen Kontur des Knotens */
int finde_Max_Ebene(tBaum Knoten)
{
  if (Knoten == null)
    return 0;
   
  return max(finde_Max_Ebene(Knoten.links), finde_Max_Ebene(Knoten.rechts)) + 1;
}

/* finde den minimalen/maximalen Versatz für den jeweilig angegebenen
   Unterbaum (Kontur) heraus - bis zu einer bestimmten Ebene (einschließlich) */

int finde_Versatz(tBaum Knoten, int Richtung, int biszuEbene, int Versatz)
{
  int result=Versatz;
 
  if (Knoten!=null)
  {  
    /* Richtung: -1=suche Minimum, +1=suche Maximum */
    if (Richtung==-1)
    {
      result=min(Knoten.Versatz,result);
    } else
    {
      result=max(Knoten.Versatz,result);
    }  
  
    /* noch nicht in der letzten zu berücksichtigenden Ebene? */
    if (Knoten.Ebene<biszuEbene)
    {
      result=finde_Versatz(Knoten.links, Richtung, biszuEbene, result);
      result=finde_Versatz(Knoten.rechts, Richtung, biszuEbene, result);
    }  
  }
 
  return result;
}

/* addiere den nach der Formel korrigierten Versatz jedem einzelnen
   Knoten der angegebenen Kontur auf */

void setze_Wert(tBaum Knoten, int Wert)
{
  if (Knoten!=null)
  {
    Knoten.Versatz+=Wert;
 
    setze_Wert(Knoten.links,Wert);
    setze_Wert(Knoten.rechts,Wert);  
  }
}

/* Einfügen der Knoten, Position wird in der Routine selbst bestimmt */
tBaum Einfuegen(tBaum Knoten, tBaum Vater, int Inhalt, int Versatz, int tag)
{
  if (Knoten == null)
  {
    /* angegebener Knoten existiert noch nicht (Position noch nicht belegt)
       --> neuen Knoten erzeugen */

  
    Knoten = new tBaum();
    Knoten.Vater = Vater;
    Knoten.links = null;
    Knoten.rechts = null;
    Knoten.Inhalt = Inhalt;
    Knoten.Ebene = Ebene+1;
    Knoten.tag = tag;
    /* Versatz mit Initialisierungswerten versehen */
    Knoten.Versatz = Versatz;
    if ((Ebene + 1) > EbenenInsgesamt)
      EbenenInsgesamt = (Ebene + 1);
  
    /* Position im Baum abhängig zur Wurzel bestimmen */
    Knoten.Art=0;  
    if (Wurzel != null)
    {
      Knoten.Art = (Inhalt < Wurzel.Inhalt) ? -1 : +1;                                   
     
      /* kleinsten/größten Versatz bestimmen */
      if (Knoten.Versatz < (kleinster_Versatz).Versatz)
        kleinster_Versatz = Knoten;
      if (Knoten.Versatz > (groesster_Versatz).Versatz)
        groesster_Versatz = Knoten;          
    }
     
    letzter_Knoten = Knoten;
  } else
  {
    Ebene += 1;
    if (Inhalt < Knoten.Inhalt)
    { /* kleineren Wert als den des aktuellen Knotens immer als linken Sohn einfügen */
      Knoten.links = Einfuegen(Knoten.links, Knoten, Inhalt, Versatz-1, tag);              
      Knoten.linksEbenen = max(Knoten.linksEbenen, letzter_Knoten.Ebene);                    
    }    
    else if (Inhalt > Knoten.Inhalt)
    { /* größeren Wert als den des aktuellen Knotens immer als rechten Sohn einfügen */
      Knoten.rechts = Einfuegen(Knoten.rechts, Knoten, Inhalt, Versatz+1, tag);     
      Knoten.rechtsEbenen = max(Knoten.rechtsEbenen, letzter_Knoten.Ebene);             
    }
    Ebene -= 1;
  }
 
  return Knoten;
}

/* Baum visuell ausgeben */
void ZeigeBaum(tBaum Knoten, int StartPosKanteLinks, int StartPosKanteOben)
{
  if (Knoten == null)   
    return;        
   
  if (!ausgegeben)
  {
    Knoten.Versatz += GesamtVersatz;
  }

  int GesamtPositionLinks = 0;
  int GesamtPositionLinks_2 = 0;
  int GesamtPositionOben = 0; 
  int GesamtPositionOben_2 = 0;
  int Zentri_Space = 0;
  int BenutzteFelder = (Knoten.Versatz - 1) * (Breite + ZwischenAbstandLinks);
  boolean Fehler = false
 
  if (Zentrierung)
  {
    Zentri_Space = (screen.width - AbstandLinks - MaxElementePlatz) / 2;
    GesamtPositionLinks = Zentri_Space + AbstandLinks + BenutzteFelder;  
    GesamtPositionOben=AbstandOben + (Knoten.Ebene * Hoehe) + (Knoten.Ebene * ZwischenAbstandOben);
  }
  else {
    GesamtPositionLinks=((screen.width / 2) - mouseX) - AbstandLinks + BenutzteFelder;
    GesamtPositionOben=((screen.height / 2) - mouseY) - AbstandOben + (Knoten.Ebene * Hoehe) + (Knoten.Ebene * ZwischenAbstandOben);
  }
  GesamtPositionLinks_2 = GesamtPositionLinks + Breite_2;
  GesamtPositionOben_2 = GesamtPositionOben + Hoehe_2;
 
  /* Erkennen, ob schon ein Knoten an die Stelle gezeichnet wurde */
  color cp = get(GesamtPositionLinks + 1, GesamtPositionOben + 1);
  if (cp == c2)
  {
    println("Fehler! Es wurde schon ein Knoten an diese Stelle gezeichnet!");
    println("betreffend Knoten: " + Knoten.Inhalt);
   
    Fehler = true;
  } 

  /* Rahmen zeichnen */
  if (Fehler)
    fill(c4);
  else
    fill(c2); 
  rect(GesamtPositionLinks,
  GesamtPositionOben,
  Breite,
  Hoehe);

  /* Inhalte einzeichnen */
  fill(c1);          
  text(Knoten.Ebene+". Ebene=" +Knoten.Inhalt + ", tag " + Knoten.tag,
  GesamtPositionLinks + 5,
  GesamtPositionOben + 15);
  line(GesamtPositionLinks,
  GesamtPositionOben_2,
  GesamtPositionLinks + Breite,
  GesamtPositionOben_2);
  line(GesamtPositionLinks_2,
  GesamtPositionOben_2,
  GesamtPositionLinks_2,
  GesamtPositionOben + Hoehe);      
  if (Knoten.links != null)
    text((Knoten.links).Inhalt,
    GesamtPositionLinks + 5,
    GesamtPositionOben_2 + 15);             
  if (Knoten.rechts!=null)
    text((Knoten.rechts).Inhalt,
    GesamtPositionLinks_2 + 5,
    GesamtPositionOben_2 + 15);                  
  if (Knoten.Ebene != 1)
    line(StartPosKanteLinks, StartPosKanteOben, GesamtPositionLinks_2, GesamtPositionOben);  

  /* Rekursionsaufrufe */
  if (Knoten.links != null)
    ZeigeBaum(Knoten.links, GesamtPositionLinks_2, GesamtPositionOben + Hoehe);
  if (Knoten.rechts != null)
    ZeigeBaum(Knoten.rechts, GesamtPositionLinks_2, GesamtPositionOben + Hoehe);             
}

/* Startwert sollte bei -1 liegen */
int Euler_Tour(tBaum Knoten, int Zaehler)
{
  if (Knoten!=null)
  {
    Zaehler += 1;
    RMQ_E[Zaehler] = Knoten;
    RMQ_L[Zaehler] = Knoten.Ebene-1;    
   
    elementsProcessed.put(Knoten.tag, Zaehler); 
   
    if (Knoten.links!=null)
    {
      Zaehler=Euler_Tour(Knoten.links, Zaehler)+1;
      RMQ_E[Zaehler]=Knoten;
      RMQ_L[Zaehler]=Knoten.Ebene-1;          
    }

    if (Knoten.rechts!=null)
    {
      Zaehler=Euler_Tour(Knoten.rechts, Zaehler)+1;
      RMQ_E[Zaehler]=Knoten;
      RMQ_L[Zaehler]=Knoten.Ebene-1;     
    }   
  }
 
  return Zaehler;
}

/* fülle Repräsentanten-Array, welche das erste Vorkommen jedes Knotens enthält */
void fillRMQ_R_Array()
{
  for (int r = 0; r < Baumelemente; r += 1)
  {
    RMQ_R[r] = elementsProcessed.get(r);
  }
}

/* mittels RMQ-Algorithmus den Lowest Common Ancestor ermitteln */
tBaum LCA(int tag1, int tag2)
{
  /* Suche im RMQ_R-Array zunächst die Entsprechung für tag1 und tag2 der beiden
     ausgewählten Knoten aus, suche dann innerhalb dieser Grenzen im RMQ_L-Array
     den niedrigsten Wert heraus.
    
     Anschließend wird im RMQ_E-Array der Wert aus dieser Indexposition zurückgegeben */

    
  int lowest=Baumelemente;
  int lowest_index=0;
  tBaum result=null;
 
  for (int i=min(RMQ_R[tag1], RMQ_R[tag2]); i<=max(RMQ_R[tag1], RMQ_R[tag2]); i+=1)
  {
    if (RMQ_L[i]<lowest)
    {
      lowest=RMQ_L[i];
      lowest_index=i;
    }
  }
 
  /* Default-Rückgabewert setzen gemäß Algorithmus */
  result = RMQ_E[lowest_index];    
  /* wenn Knoten B ein Sohn von A ist wird A gemäß Algorithmus zurückgeliefert,
     dann greift Ausnahmeregelung */
   
  if ((RMQ_E[lowest_index].tag == tag1) || (RMQ_E[lowest_index].tag == tag2))
    if (RMQ_E[lowest_index].Vater != null )
       result = RMQ_E[lowest_index].Vater;
 
  return result;
}

/* Zeitmessung ausgeben, completeTimeBefore muss vorher separat genommen werden */
void nimmZeit(String AusgabeString)
{
  completeTimeAfter = System.currentTimeMillis();    
  completeTimeDiff   = completeTimeAfter - completeTimeBefore;    
 
  /* Ausgabe für Gesamtdurchlauf formatieren */
  String timeString = String.format("\n\nZeit benötigt für %s: %02d min, %02d sec, %03d milliseconds",
    AusgabeString,
    TimeUnit.MILLISECONDS.toMinutes(completeTimeDiff),
    TimeUnit.MILLISECONDS.toSeconds(completeTimeDiff) -
      TimeUnit.MINUTES.toSeconds(TimeUnit.MILLISECONDS.toMinutes(completeTimeDiff)),
    completeTimeDiff % 1000);  
  println(timeString);     
}

 

Tag-Wolke

Monats-Liste